PLANO DE DISCIPLINA			
IDENTIFICAÇÃO			
CURSO: Técnico em eletrônica - subsequente			
DISCIPLINA: Álgebra booleana e circuitos lógicos		CÓDIGO DA DISCIPLINA:	
PRÉ-REQUISITO:			
UNIDADE CURRICULAR: Obrigatória [X] Optativa []		Eletiva []	SEMESTRE: 1°
CARGA HORÁRIA			
TEÓRICA: 33 h/r	PRÁTICA: 34 h/r		EaD:
CARGA HORÁRIA SEMANAL: 4			
CARGA HORÁRIA TOTAL: 67 h/r			
DOCENTE RESPONSÁVEL: Saulo Brito de Oliveira			

EMENTA

Representação e processamento de números binários. Construção de circuitos com portas lógicas. Utilização da Álgebra de Boole e Mapas de Karnaugh para simplificação de circuitos lógicos. Identificação de circuitos integrados lógicos. Características e substituição de famílias e subfamílias lógicas. Construção e aplicação de circuitos lógicos combinacionais diversos.

OBJETIVOS

Geral

 Conhecer o funcionamento, os principais tipos, características e aplicações dos circuitos lógicos combinacionais.

Específicos

- Representar e realizar operações com números binários;
- Compreender o funcionamento de circuitos que utilizam portas lógicas;
- Simplificar circuitos lógicos, utilizando Álgebra de Boole e Mapas de Karnaugh;
- Conhecer as características das principais famílias lógicas digitais comerciais;
- Identificar circuitos integrados das principais famílias lógicas comerciais;
- Compreender o funcionamento de circuitos combinacionais;
- Aplicar circuitos combinacionais na solução de um problema lógico típico.

CONTEÚDO PROGRAMÁTICO

I. Introdução aos circuitos digitais

- a. Sinal Analógico versus Sinal Digital
- b. Código Binário
- c. Código Hexadecimal
- d. Bits, Bytes e Palavras

II. Portas Lógicas.

- a. Tabela da verdade
- b. Inversor
- c. Portas AND e NAND
- d. Portas OR e NOR
- e. Portas XOR e XNOR
- f. Portas NAND e NOR: portas universais
- g. Montagem de circuitos lógicos a partir das equações

III. Álgebra Booleana

a. Maxitermos e Minitermos

- b. Simplificação de circuitos lógicos
- c. Mapas de Karnaugh
- d. Metodologia para projetar um circuito lógico simples
- e. Projeto

IV. Famílias de circuitos lógicos

- a. Circuitos TTL
- b. Circuitos CMOS
- c. Encapsulamentos e pinagens
- d. Prefixos e sufixos dos principais fabricantes
- e. Fan-In e Fan-Out
- f. Consumo de potência
- g. Tempo de atraso
- h. Características e substituições entre subfamílias

V. Multiplexadores e demultiplexadores

- a. Códigos e codificadores 12 horas-aula
- b. Código Gray
- c. Código BCD
- d. Conversões básicas entre códigos
- e. Codificadores e Decodificadores
- f. Display de 7 segmentos

VI. Aritmética Binária

- a. Adição sem Sinal
- b. Meio somador
- c. Somador completo
- d. Adição e Subtração com Sinal
- e. Incrementador, Decrementador e Complementador de Dois
- f. Unidade Lógica e Aritmética (ALU)

METODOLOGIA DE ENSINO

A apresentação do conteúdo dar-se-á mediante aulas teóricas e práticas, apoiadas em recursos audiovisuais e computacionais, bem como estabelecendo um ensino-aprendizagem significativo. Aplicação de trabalhos individuais, apresentações de seminários e lista de exercícios.

RECURSOS DIDÁTICOS

[X]Q	Quadro
[X]P	rojetor
[] V	/ídeos/DVDs
[X]	Periódicos/Livros/Revistas/Links
[]E	quipamento de Som
[X]	Laboratório de eletricidade, contendo: protoboards, kit's didáticos de eletricidade,
compo	nentes eletrônicos, multímetros, fontes de tensão
[X]S	oftwares: Multsim, Proteus.
]0	Outros

CRITÉRIOS DE AVALIAÇÃO

- Avaliações escritas, práticas e projetos;
- Relatórios de algumas atividades práticas;
- Trabalhos individuais e em grupo (listas de exercícios, pesquisas, seminários);
- O processo de avaliação é contínuo e cumulativo;
- A aprovação na disciplina se dará de acordo com o Regulamento Didático dos cursos subsequentes do IFPB.

BIBLIOGRAFIA

Bibliografia Básica:

CAPUANO, F. G. e IDOETA, I. V. **Elementos de Eletrônica Digital**. Editora Érica. 40ª Edição. 2012.

GARCIA, Paulo A., MARTINI, José S. C. **Eletrônica Digital – Teoria e Laboratório**. Érica. 2º edição.2009.

TOCCI, R. J., WIDMER, N. S. e MOSS, G. L. **Sistemas Digitais – Princípios e Aplicações**. Editora Pearson. 11ª Edição. 2011.

Bibliografia Complementar:

PEDRONI, V. A. **Eletrônica Digital Moderna e VHDL**. Editora Campus; 1ª Edição. 2010. LOURENÇO, Antônio Carlos. **Circuitos Digitais**. São Paulo: Ed. Érica. 9ª edição 2018. MALVINO, Albert Paul. **Eletrônica Digital** – Vol. 1 e 2.São Paulo: Mc Graw-Hill, 1998. BIGNELL, James W. DONOVAN, Robert. **Eletrônica Digital**. Ed. Cengage learning.2009 TAUB, Herbert. **Eletrônica Digital**. São Paulo: McGraw-Hill, 1982.

OBSERVAÇÕES