

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA

PLANO DE DISCIPLINA						
IDENTIFICAÇÃO						
CAMPUS: PATOS						
CURSO: BACHARELADO ENGENHARIA CIVIL						
DISCIPLINA: FÍSICA GERAL I		CÓDIGO DA DISCII	CÓDIGO DA DISCIPLINA: 86695			
PRÉ-REQUISITO: CÁLCULO DIFERENCIAL E INTEGRAL I						
UNIDADE CURRICULAR: OBRIGATÓRIA		SEMESTRE: 2024.1	SEMESTRE: 2024.1			
CARGA HORÁRIA						
TEÓRICA: 67 h/a	PRÁTICA:	EaD1:	EXTENSÃO:			
CARGA HORÁRIA SEMANAL: 4 h/a						
CARGA HORÁRIA TOTAL: 67 h/a						
DOCENTE RESPONSÁVEL: RODRIGO FASSELUAN MORAIS CORREIA						
EMENTA						

Vetores. Movimento em uma, duas e três dimensões. Dinâmica da partícula: leis de Newton e aplicações. Trabalho e energia. Conservação da energia. Sistemas de partículas. Colisões. Cinemática e dinâmica de rotação. Equilíbrio dos corpos rígidos

OBJETIVOS DA DISCIPLINA/COMPONENTE CURRICULAR

(Geral e Específicos)

Geral

Apresentar de forma ampla e sistemática os fenômenos mecânicos clássicos, permitindo, ao estudante, através de discussões
e aplicações em fenômenos reais e hipotéticos, fazendo-se uso da matemática como instrumento de quantificação, adquirir
conhecimentos básicos sobre o assunto.

Específicos

- Compreender os princípios fundamentais da mecânica clássica;
- Possibilitar uma compreensão dos fenômenos físicos mecânicos naturais, de maneira interdisciplinar e contextualizada;
- Descrever o movimento de uma partícula material em uma, duas e três dimensões, bem como a rotação e o rolamento de um corpo rígido;
- Apresentar os conceitos da mecânica Newtoniana, introduzindo as ferramentas do Cálculo Diferencial e Integral e da Álgebra Vetorial como auxiliares no entendimento do referido conceito;
- · Aplicar as leis de Newton, da conservação do momento linear, da energia mecânica e do momento angular.

CONTEÚDO PROGRAMATICO

I. Vetores

Vetores e Escalares

Operações com vetores

Decomposição e componentes de um vetor

II. Movimento em uma, duas e três dimensões

Deslocamento, velocidade e aceleração

Movimento horizontal e vertical

Movimento circular Movimento de projétil

Composição de movimento

III. Dinâmica da partícula

As leis de Newton

Aplicações das leis de Newton força de atrito e força elástica

Dinâmica do movimento circular

IV. Trabalho e Energia

Trabalho realizado por uma força constante

Trabalho realizado por uma força variável

Teorema do Trabalho - Energia

V. Conservação da Energia

Energia Cinética e Potencial

Princípio da conservação da energia Forças conservativas e não conservativas

VI. Sistema de Partículas

Centro de Massa

Momento linear de uma partícula e de um sistema de partículas

Conservação do momento linear

VII. Colisões Impulso

Teorema impulso – variação do momento linear

Colisões

VIII. Rotação Cinemática da rotação

Dinâmica da rotação

Momento de inércia

Torque

Momento angular

Conservação do momento angular

IX. Equilíbrio dos Corpos Rígidos

Condições de equilíbrio

Centro de gravidade

Tipos de equilíbrio

METODOLOGIA DE ENSINO

Aulas expositivas utilizando os recursos didáticos disponíveis. Aplicação e resolução de listas de exercícios e trabalhos extraclasse. Aplicação de trabalhos individuais e/ou em grupo de experimentos demonstrativos.

RECURSOS DIDÁTICOS

[X] Quadro

[X] Projetor

[] Vídeos/DVDs

[X] Periódicos/Livros/Revistas/Links

[] Equipamento de Som

[X] Laboratório

[] Softwares²

[] Outros3

CRITÉRIOS DE AVALIAÇÃO

(Espeficar quantas avaliações e formas de avaliação- avaliação escrita objetivo, subjetiva, trabalho, seminário, artigo, etc. - para integralização da disciplina/componente curricular, incluindo a atividade de recuperação final.)

Para efeito de avaliação será realizado 3 notas (P1, P2 e P3), em datas definidas no fim de cada unidade. Essas notas serão obtidas a partir de: prova escrita, trabalho individual e/ou em grupo, a critério do professor. A média da disciplina será uma média aritmética e se dará da seguinte forma:

M=(P1+P2+P3)/3

Os alunos que tiverem média igual ou superior a 70 (setenta) serão considerados aprovados por média, os que tiverem média inferior a 40 (quarenta) estarão reprovados e os demais poderão submeter-se a um exame final (F). A média final destes últimos será uma média ponderada e dará da seguinte forma:

MF=(6M+4F)/10

A qual deverá ser igual ou superior a 50 (cinquenta) para que o aluno seja considerado aprovado.

Os alunos que não comparecer a pelo menos 75% das aulas serão considerados reprovados por falta de frequência.

ATIVIDADE DE EXTENSÃO⁴

BIBLIOGRAFIA5

Bibliografia Básica:

- 1. HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de física: Mecânica. 10. ed. Rio de Janeiro: LTC, 2016. v. 1;
- 2. NUSSENZVEIG, Moysés H. Curso de física básica 1: Mecânica . 5. ed. São Paulo: Blucher, 2013. v. 1;
- 3. YOUNG, Hugh D.; FREEDMAN, Roger A.; FORD, Lewis. **Física I: Mecânica**. 14. ed. São Paulo: Pearson Education do Brasil, 2016. v. 1;

Bibliografia Complementar:

- 1. TIPLER, Paul A.; MOSCA, Gene . Física para cientistas e engenheiros: Mecânica, oscilações e ondas, termodinâmica. 6. ed. Rio de Janeiro: LTC, 2009. v. 1;
- 2. RAMALHO JUNIOR, Francisco; FERRARO, Nicolau Gilberto; SOARES, Paulo Antônio De Toledo. **Os fundamentos da física: Mecânica.** 9. ed. São Paulo: Moderna, 2007. v. 1.

OBSERVAÇÕES

(Acrescentar informais complementares ou explicativas caso o docente(s) considere importantes para a disciplina/componente curricular)

- 1 Para a oferta de disciplinas na modalidade à distância, integral ou parcial, desde que não ultrapassem os limites definidos em legislação.
- 2 Nesse ítem o professor deve especificar quais softwares serão trabalhados em sala de aula.
- 3 Nesse ítem o professor pode especificar outras formas de recursos utilizadas que não estejam citada.
- 4 Nesse item deve ser detalhado o PROJETO e/ou PROGRAMA DE EXTENSÃO que será executado na disciplina. Observando as orientações do Art. 10, Incisos I, II, III, IV, V, VI, VII e VIII, da Instrução Normativa que trata da construção do **Plano de Disciplina**.
- 5 Observar os mínimos de 3 (três) títulos para a bibliografia básica e 5 (cinco) para a bibliografia complementar.

Documento assinado eletronicamente por:

Rodrigo Fasseluan Morais Correia, PROFESSOR ENS BASICO TECN TECNOLOGICO, em 15/02/2024 11:40:50.

Este documento foi emitido pelo SUAP em 15/02/2024. Para comprovar sua autenticidade, faça a leitura do QRCode ao lado ou acesse https://suap.ifpb.edu.br/autenticar documento/e forneca os dados abaixo:

Código 532114

Verificador: c21c6061ad

Código de Autenticação:

