PLANO DE DISCIPLINA								
IDENTIFICAÇÃO								
CURSO: Engenharia Elétrica								
DISCIPLINA: Álgebra Vetorial			CÓDIG	CÓDIGO DA DISCIPLINA: TEC.0040				
PRÉ-REQUISITO(S): Não há			·					
UNIDADE CURRICULAR:	Obrigatória [X]	Optativa []	Eletiva []	SEMESTRE: 1°	-			
VÁLIDO PARA O(S) PERÍODO(S) LETIVO(S): 2017.2 em diante								
CARGA HORÁRIA								
TEÓRICA: 67 horas	PRÁTICA:		Ea	D:				
CARGA HORÁRIA SEMANAL: 04 horas-aula		CARGA E	CARGA HORÁRIA TOTAL: 67 horas					
DOCENTE(S) RESPONSÁVEL(IS): Prof. Manoel Wallace Alves Ramos								

EMENTA

Álgebra de vetores no plano e no espaço tridimensional. Retas e planos. Cônicas e quadráticas.

OBJETIVOS

Geral: Compreender as noções básicas da álgebra de vetores, bem como suas aplicações no estudo da geometria analítica e em outros ramos da ciência.

Específicos: Ao final da disciplina, espera-se que o aluno seja capaz de desenvolver as competências/habilidades de: Investigar os aspectos geométricos e analíticos dos vetores no plano e no espaço; Resolver problemas de geometria analítica mediante cálculo vetorial; Resolver problemas envolvendo cônicas e superfícies.

CONTEÚDO PROGRAMÁTICO

- 1. Segmento de reta orientado relação de equipolência; vetores: definição, adição e multiplicação por escalar; dependência e independência linear (aspecto geométrico); sistema de coordenadas no espaço; operações com vetores (enfoque analítico); dependência e independência linear em IR3, bases; coordenadas de um vetor em relação a uma base; norma de um vetor; ângulo entre vetores; produto interno (escalar) aspecto geométrico; propriedades do produto escalar; bases ortogonais e ortonormais; produto escalar: aspecto analítico; produto vetorial: aspecto geométrico; propriedades do produto vetorial; produto vetorial: aspecto analítico; produto misto: definição, propriedades e interpretação geométrica.
- 2. Planos: plano determinado por três pontos; plano determinado por um ponto e dois vetores; plano determinado por um ponto e um vetor ortogonal. Retas: reta determinada por um ponto e uma direção equação vetorial, equações paramétricas e equações simétricas; reta determinada por dois pontos; reta determinada por dois planos. Posições relativas, interseções e ângulos: posições relativas entre duas retas, ângulo entre retas e interseções; posições relativas entre dois planos, ângulo entre planos e interseções; posições relativas entre uma reta e um plano, ângulo entre uma reta e um plano, interseção; posições relativas entre três planos, interseção entre três planos. Distâncias: distância entre dois pontos; distância entre ponto e reta; distância entre um ponto e um plano; distância entre duas retas; distância entre dois planos.
- 3. Cônicas: circunferência; elipse; hipérbole; parábola; translação e rotação de eixos. Superfícies: superfícies cilíndricas; superfícies de revolução; superfície esférica; elipsóide; parabolóides: elíptico, circular, hiperbólico; hiperbolóides: de 1 e 2 folhas; cone.

METODOLOGIA DE ENSINO

Aulas expositivas e dialogadas utilizando os recursos didáticos; aulas de exercícios; seminários (trabalhos de pesquisa).

RECURSOS DIDÁTICOS						
[X] Quadro	[]	Equipamento de Som				
[X] Projetor	[]	Laboratório				
[] Vídeos/DVDs		Softwares:				
[] Periódicos/Livros/Revistas/Links	[]	Outros:				

CRITÉRIOS DE AVALIAÇÃO

A avaliação ocorrerá por meio de avaliações após o término de cada unidade.

BIBLIOGRAFIA

Bibliografia Básica:

SANTOS, F. J.; FERREIRA, S. F. Geometria Analítica. Porto Alegre: Bookman / Grupo A, 2009. STEINBRUCH, A.; WINTERLE, P. Geometria Analítica. São Paulo: Pearson, 1987. WINTERLE, P. Vetores e Geometria Analítica. São Paulo: Pearson, 2014.

Bibliografia Complementar:

BOULOS, P.; CAMARGO, I. Geometria Analítica – Um Tratamento Vetorial. São Paulo: Pearson, 2004.

LEITHOLD, L. O Cálculo com Geometria Analítica, Volume 2. São Paulo: Harbra, 1994. REIS, G. L.; SILVA, V. V. Geometria Analítica. Rio de Janeiro: LTC/Grupo Gen, 1996. SIMMONS, G. F. Cálculo com Geometria Analítica. São Paulo: Pearson, 1996.

