| PLANO DE DISCIPLINA                                                                                  |                         |                                |
|------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|
| IDENTIFICAÇÃO                                                                                        |                         |                                |
| CURSO: Engenharia Elétrica                                                                           |                         |                                |
| DISCIPLINA: Circuitos Elétricos I                                                                    |                         | CÓDIGO DA DISCIPLINA: TEC.0210 |
| PRÉ-REQUISITO(S): Introdução à Engenharia Elétrica; Equações Diferenciais; Eletricidade e Magnetismo |                         |                                |
| UNIDADE CURRICULAR: Obriga                                                                           | atória [X] Optativa [ ] | Eletiva [ ] SEMESTRE: 4°       |
| VÁLIDO PARA O(S) PERÍODO(S) LETIVO(S): 2017.2 em diante                                              |                         |                                |
| CARGA HORÁRIA                                                                                        |                         |                                |
| TEÓRICA: 70 horas                                                                                    | PRÁTICA: 13 horas       | EaD:                           |
| CARGA HORÁRIA SEMANAL: 05 horas-aula CARGA HORÁRIA TOTAL: 83 horas                                   |                         |                                |
| DOCENTE(S) RESPONSÁVEL(IS): Silvana Luciene do Nascimento Cunha Costa                                |                         |                                |

### **EMENTA**

Métodos de Análise de Circuitos. Teoremas de Circuitos. Capacitores e Indutores. Circuitos de 1ª e 2ª ordem. Filtros passivos. Análise de circuitos pela resposta em frequência. A transformada de Fourier e sua aplicação em circuitos elétricos.

### **OBJETIVOS**

Geral: fornecer ao aluno subsídios suficientes para analisar circuitos elétricos em corrente contínua.

**Específicos:** ao final da disciplina, os alunos terão a capacidade de: conhecer as principais medidas e grandezas elétricas; analisar circuitos puramente resistivos; aplicar os teoremas fundamentais na análise de circuitos elétricos; analisar circuitos pela resposta em frequência e aplicar a transformada de Fourier em circuitos elétricos.

# CONTEÚDO PROGRAMÁTICO

- 1. Métodos de análise de circuitos: leis de Kirchhoff; cálculo de tensão e corrente em circuitos resistivos série, paralelo e misto; divisor de tensão e divisor de corrente; propriedade da linearidade; teorema da superposição; transformação de fontes; teorema de Thévenin; teorema de Norton; análise nodal.
- 2. Capacitores e indutores: capacitores (características, aplicações e associação de capacitores em série e em paralelo); indutores (características, aplicações e associação de indutores em série e em paralelo)
- 3. Circuitos de 1ª e 2ª ordem: análise de circuitos RC e RL em regime permanente; análise de transiente em circuitos RC, RL e RLC por equações diferenciais.
- 4. Filtros Passivos: análise por equações diferenciais e por Transformada de Fourier.
- 5. Resposta em amplitude e fase para filtros passa-baixas, passa-altas, passa-faixa e rejeita-faixa.

## METODOLOGIA DE ENSINO

Aulas expositivas e dialogadas em sala de aula e experiências práticas em laboratório.

| RECURSOS DIDÁTICOS                   |                                             |  |
|--------------------------------------|---------------------------------------------|--|
| [ X ] Quadro                         | [ ] Equipamento de Som                      |  |
| [X] Projetor                         | [ X ] Laboratório de circuitos elétricos    |  |
| [ ] Vídeos/DVDs                      | [ X ] Softwares: de simulação computacional |  |
| [ ] Periódicos/Livros/Revistas/Links | [ ] Outros:                                 |  |
|                                      |                                             |  |
| CRITÉRIOS DE AVALIAÇÃO               |                                             |  |

Provas escritas; apresentações de seminários; trabalhos práticos e teóricos e listas de exercícios. Relatórios dos experimentos práticos. Mínimo de três (3) avaliações.



# **BIBLIOGRAFIA**

### Bibliografia Básica:

BOYLESTAD, R. L. Introdução à Análise de Circuitos. São Paulo: Pearson, 2012.

DORF, C. R.; SVOBODA, J. A. Introdução aos Circuitos Elétricos. Rio de Janeiro: LTC / Grupo Gen, 2016.

SADIKU, M. N. O.; ALEXANDER, C. K. Fundamentos de Circuitos Elétricos. São Paulo: McGraw-Hill / Grupo A, 2013.

### **Bibliografia Complementar:**

HAYT, Jr., W. H. et al. Análise de Circuitos em Engenharia. São Paulo: McGraw-Hill / Grupo A, 2014.

IRWIN, J. D.; NELMS, R. M. Análise Básica de Circuitos para Engenharia. Rio de Janeiro: LTC / Grupo Gen, 2013.

NAHVI, M.; EDMINISTER, J. A. Circuitos Elétricos. Porto Alegre: Bookman / Grupo A, 2014.

NILSSON, J. W.; REIDEL, S. A. Circuitos Elétricos. São Paulo: Pearson, 2015.

ORSINI, L. Q.; CONSONNI, D. Curso de Circuitos Elétricos. São Paulo: Blucher, 2004.

SADIKU, M. N. O. *et al.* Análise de Circuitos Elétricos com Aplicações. Porto Alegre: McGraw-Hill / Grupo A, 2014.

