PLANO DE DISCIPLINA					
IDENTIFICAÇÃO					
CURSO: Engenharia Elétrica					
DISCIPLINA: Comunicações Digitais			CÓDIC	CÓDIGO DA DISCIPLINA: TEC.0291	
PRÉ-REQUISITO(S): Princípios de Comunicações; Sistemas Digitais.					
UNIDADE CURRICULAR: Obrigat	ória [] Opta	tiva [X]	Eletiva []	SEMESTRE: a partir do 7°	
VÁLIDO PARA O(S) PERÍODO(S) LETIVO(S): 2017.2 em diante					
CARGA HORÁRIA					
TEÓRICA: 83 horas	PRÁTICA:			aD:	
CARGA HORÁRIA SEMANAL: 5 horas-aula		CARGA HORÁRIA TOTAL: 83 horas			
DOCENTE(S) RESPONSÁVEL(IS): Niedson Almeida Lemos					

EMENTA

Análise espectral. Modelo de um sistema de comunicações digitais. Representação de sinais e sistemas passafaixa. Representação de sinais em bases de funções ortonormais. Métodos de modulação digital. Cálculo de probabilidade de erro e análise espectral. Sistemas digitais coerentes e não coerentes. Detecção digital ótima. Sinalização binária e M-ária. Sincronização. Modulação digital em quadratura e sistemas M-ários. Múltiplo acesso. Técnicas de espalhamento espectral. Características espectrais dos sinais modulados digitalmente.

OBJETIVOS

Geral: conhecer os princípios das comunicações digitais, enfatizando o modelamento e o projeto de receptores digitais, a recepção não coerente a transmissão em banda básica e o espectro de potência de sinais modulados digitalmente.

Específicos: o aluno deverá ser capaz, ao final do curso, de: diferenciar os diversos tipos de modulações digitais existentes; Identificar os diversos parâmetros que comprometem o desempenho de uma modulação digital; Compreender o cálculo da BER de esquemas de modulação M-ários. Utilizar *software* para simular processos estocásticos combinados com sinais modulados digitalmente.

CONTEÚDO PROGRAMÁTICO

- 1. O sistema de comunicação digital: modelo conceitual (diagrama em blocos); o canal de comunicação; tipos; imperfeições no canal; transmissão sem distorção.
- 2. Modelamento matemático de um canal de comunicação: definição de Processos Estocásticos (PE) e suas principais medidas; Densidade Espectral de Potência (DEP) de sinais determinísticos e PE; PE e sistemas lineares; PE Gaussianos; o canal RAGB.
- 3. Transmissão em banda básica: sinais em banda básica; transmissão em banda básica de dados digitais; embaralhamento e desembaralhamento; interferência intersimbólica (ISI); critério de Nyquist para eliminação da ISI; sinais limitados em faixa com ISI controlada; diagrama do Olho; receptores regenerativos; equalizadores lineares.
- 4. Projeto de receptores ótimos de canais Gaussianos: recepção ótima de sinais; receptor ótimo para canais gaussianos (RAGB); modulação digital; cálculo da probabilidade de erro das modulações digitais em canais RAGB; limitantes superiores da probabilidade de erro em canais RAGB; taxa de erro de bit (BER) e relação sinal-ruído.
- 5. Recepção não coerente de sinais modulados: projeto do receptor não coerente ótimo; modulação DPSK; modulação Pi/4- DPSK; comparação de desempenho

METODOLOGIA DE ENSINO

Aulas expositivas, seminários e listas de exercícios.

RECURSOS DIDÁTICOS				
[X] Quadro	[] Equipamento de Som			
[X] Projetor	[] Laboratório			
[] Vídeos/DVDs	[X] Softwares: de simulação computacional			
[] Periódicos/Livros/Revistas/Links	Outros:			

CRITÉRIOS DE AVALIAÇÃO

Prova escrita; Lista de exercícios; Projeto final; Relatórios de práticas de laboratório; Seminários.

BIBLIOGRAFIA

Bibliografia Básica:

LATHI, B. P.; DING, Z. Sistemas de Comunicações Analógicos e Digitais Modernos. Rio de Janeiro: LTC / Grupo Gen, 2012.

HAYKIN, S. Digital Communications. New York (United States): Wiley, 1988.

PIMENTEL, C. J. L. Comunicação Digital. Rio de Janeiro: Brasport, 2007.

Bibliografia Complementar:

ASSIS, F. M. Princípios de Transmissão Digital. João Pessoa: Editora Universitária, UFPB, 1999.

BRANDÃO, J. C. B. et al. Princípios de Comunicações. Rio de Janeiro: Interciência, 2014

LATHI, B. P.; DING, Z. Modern Digital and Analog Communication Systems. USA: Oxford University Press, 2009.

GUIMARÃES, D. A.; SOUZA, R. A. A. Transmissão Digital – Princípios e Aplicações. São Paulo: Érica / Saraiva, 2012.

HAYKIN, S. Sistemas de Comunicação: Analógicos e Digitais. Porto Alegre: Bookman / Grupo A, 2004

HAYKIN, S.; MOHER, M. Introdução aos Sistemas de Comunicação. Porto Alegre: Bookman / Grupo A, 2008.

HAYKIN, S.; MOHER, M. Sistemas de Comunicação. Porto Alegre: Bookman / Grupo A, 2011.

